
A graphic explanation
of

Red-black trees

Matthias Goerner

Red-black trees
A red-black tree is

one of the easiest and most important
self-balancing

binary search trees.

(implemented by, e.g., C++’s std::map, Java’s TreeMap)

16

12

9

6 11

Binary search trees

13 15

14

27

21

20 24 36

34

Each node has:
• some orderable piece of data (key), say a number
• can have a left child and
• can have a right child such that …

… the left child and all its
descendants are smaller
than the node and …

… the right child and all
its descendants are
greater than the node.

Tree “balanced”: fast look-ups, e.g., if tree had 1 million nodes, only traverse 20.
Similar to opening a phone book or dictionary in the middle and deciding whether
to continue searching in the left or right half.

6

Unbalanced binary search
trees

9
11

13

12 14
15

16
20

21
27

24 34
36

However:
“unbalanced tree”: look-ups just as slow as
a brute force search.

Red-black tree = binary search tree with one
extra bit of information per node (the color
“red” or “black”) that obey certain rules so
that they never become unbalanced, no
matter in what order the elements were
inserted when creating the tree.

A graphic way to think
about red-black trees

A red-black tree is a tree drawn on red ruled paper obeying certain rules.

34

Draw tree on red ruled
paper

But drawing all the red zones
in red actually hurts the eyes
too much, so just imagine it.

34

Draw tree on ruled paper

All the zones between two
gridlines or below the lowest
gridline are “red”.

“Black” gridlines extend
indefinitely to the top.

But there is a lowest gridline.

16

12

9

6 11

2

20

18 26

24

23 13 15

14

16

12

9

6 11

2

20

18

26

24

23 13 15

14

Traditional textbook:
Red-black tree
as colored tree

This presentation:
Red-black tree
on ruled paper

Unfortunately, most traditional textbooks do not
draw red-black trees on ruled paper - which
makes them harder to understand.

The rules

The rules for red-black trees now become:
(compare to, e.g.,

Cormen et al “Introduction to Algorithms”)

34
16

12

9

6 11

2

20

18 28

24

30

26

Rule 1
Each node is considered to be either
• on a black gridline or
• in a red zone between gridlines.

This corresponds to the node
being colored “black” or “red”
in the traditional approach.

13 15

14

34

16

20

18 28

24

30

26

Rule 2
The root has to be on a gridline.

13 15

14

Violation

34
16

12

6

2

20

18 26

24

30

26

Rule 3
An edge cannot cross a gridline
(and, in particular, not connect two
nodes on the same gridline).

13 15

14
Violation

34
16

12

9

6 11

2

20

18 26

24

30 23

Rule 4
There cannot be two or more
connected nodes in a red zone.

13 15

14

28
Violation

34
16

12

9

6 11

2

20

28

24

30

26

Rule 5

14

Each node not on or below
the lowest gridline must
have two children.

Violations

Search time
The rules enforce that (starting from the root),
for each gridline down,
the number of nodes doubles to quadruples,
so the tree grows exponentially:

2 4
Thus, the number of gridlines occupied by the tree
and, hence, the search time grows
logarithmically in the number of nodes.

34
16

12

9

6 11

2

20

18 28

24

30

26

Insertion

13 15

14

34
16

12

9

6 11

20

18 28

24

30

26

Insertion

13 15

14

1

1. Insert as for ordinary binary search tree.

New node will always be
below lowest gridline.

2

34
16

12

9

6 11

20

18 28

24

30

26

Insertion

13 15

14

1

1. Insert as for ordinary binary search tree.

2

This might cause a temporary violation of rule 4!

Violation: two connected nodes
in same red zone

34
16

12

9

6

11

20

18 28

24

30

26

Insertion

13 15

14

1. Insert as for ordinary binary search tree.
2. Follow insertion path from bottom up to fix rule violation.

1

2

Fixing the rule violation
The previous example was easy, just one “right-rotation”.

Violation

Violation

In general, while fixing a violation in one red zone, we might introduce
another violation in the zone above which we then need to fix and so
on…

… until we hit the root. A that point, we can fix the tree by changing
the root or moving it half a grid line up.
This might sound complicated, but it really boils down to:

only 3 cases (up to mirroring)!

Case analysis: overview
Violation:
a is a child of b and both are in the
(same) red zone. Violation

a

b

c

Has parent c of b another red child?

Yes

?

Case 3

No

Is a to the same side
of b as b is to c?

No

Case 2

Yes

Case 1

a

b

c

a

b

c

Case 1
A node b in a red zone
• has a left child a in the (same) red zone and
• is the left child of a node c and c has no right child in the red zone.
Resolution:
• Right-rotate about c.
• If c was a root, set b as new root.

Violation

a

b

c
Violation
resolved

a

b

c

Note that this works the same when the red zone is the lowest one
and when interchanging left and right everywhere.

Case 2
A node b in a red zone
• has a right child a in the (same) red zone and
• is the left child of a node c and c has no right child in the red zone.
Resolution:
• Left-rotate about b to reduce to case 1.

Violation
a

b

c

Violation:
Case 1

b

a

c

Note that this works the same when the red zone is the lowest one
and when interchanging left and right everywhere.

Case 3
A node b in a red zone
• has a child a in the (same) red zone and
• its parent c has two children in the red zone, call the other one d.
Resolution:
• Move b, c, and d half a gridline up.
• Check whether c has a parent in the red zone (that c is now in), if

yes apply appropriate case to fix new violation.
• If c was the root, …

Violation

a

b

c

d

Potential
violation

a

b

c

d

Case 3: root
A node b in a red zone
• has a child a in the (same) red zone and
• its parent c has two children in the red zone, call the other one d.
Resolution:
• Move b, c, and d half a gridline up.
• If c was not root, fix potential violation.
• If c was the root, move it up to the next gridline.

Violation

a

b

c

d

a

b d

c

Implementation

16

12

9

6 11

2

20

18

26

24

23 13 15

14

Two-colored
binary search tree

Case 3 graphically
A node b in a red zone
• has a child a in the (same) red zone and
• its parent c has two children in the red zone, call the other one d.
Resolution (graphically):
• Move b and d up to the next gridline
• Move c up to the next red zone
• …

Violation

a

b

c

d

Potential
violation

a

b

c

d

Implementation of Case 3
A node b is red and
• has a red child a and
• its parent c has two red children, call the other one d.
Resolution (implementation):
• Color b and d black (to indicate gridline)
• Color c red (to indicate red zone)
• …

Violation

a

b

c

d

Violation

a

b

c

d

Example: Insert 2

2

No fix required.

Adding 2 as root to empty tree.

Example: Insert 4

4

2

No fix required.

Starting with tree having only one node,
insert 4.

Example: Insert 5

4

2

5

5

4

2Violation

Case 1 applies:
Left-rotate about 2
Note that the root is now 4.

Example: Insert 7

5

7

Violation

Case 3 applies:
Move 2, 4, 5 up by half a gridline.
Move the root 4 to the next gridline.

4

2

5

7

4

2

Example: Insert 6

Violation:
Case 1

Case 2 applies:
Right-rotate about 7 to reduce to case 1.

5

4

25

7

4

2

6

6

7

Example: Insert 6 (part 2)

Violation:
Case 1

5

4

2

6

7
Case 1 applies:
Left-rotate about 5.

6

4

2

75

Example: Insert 8

Case 3 applies:
Move 5, 6, 7 by half a gridline.

6

4

2 756

4

2

75

8

8Violation

Example: Insert 9

Case 1 applies:
Left-rotate about 7

6

4

2 85

9

6

4

2 75

8

9
Violation

7

Example: Insert 10

Case 3 applies:
Move 7, 8, 9 up half a grid line

6
4

2

8

5 97

6

4

2 85

97

10

Violation 10

Violation

Example: Insert 10 (part 2)

4

6

2

8

5 97

10

